Functional heterophase materials for structural electronics

Foundation for Polish Science, FIRST TEAM/2016-1/7


“Science is messy, and the results of research rarely conform fully to plan or expectation. ‘Clean’ narratives are an artefact of inappropriate pressures and the culture they have generated.”

Tell it like it is. Nat Hum Behav 4, 1 (2020)


The main objective of this project is to design, fabricate and characterise a group of composite materials with tailored physical properties for additive manufacturing of structural electronics. A vast range of investigations will be conducted on fabrication of polymer composites with metal, carbon, ceramic, semiconductor, and other type of functional phases – including, but not limited to nanomaterials – with emphasis on rheology, dispersion and homogenization, electrical properties (resistivity, dielectric properties, noises), mechanical and environmental factors and other functional properties (optical, magnetic, piezo, thermal, etc.).

Continue reading “Project”


Carbon Nanotube-Based Composite Filaments for 3D Printing of Structural and Conductive Elements

Applied Sciences 2021, 11(3), 1272S   In this publication, we describe the process of fabrication and the analysis of the properties of nanocomposite filaments based on carbon nanotubes and acrylonitrile butadiene styrene (ABS) polymer for fused deposition modeling (FDM) additive manufacturing. Polymer granulate was mixed and extruded with a filling fraction of 0.99, 1.96, 4.76, …

Additive manufacturing of electronics from silver nanopowders sintered on 3D printed low-temperature substrates

… coming soon to Advanced Engineering Materials. Additive manufacturing is more widely used these days in aerospace, power industry, and automotive. The latest reports indicate that electronics can be produced with this technique. This approach requires the development of new materials for the fabrication of conductive metallic layers on polymers. Herein, a hybrid technique based …

Carbon Nanotube Embedded Adhesives for Real-time Monitoring of Adhesion Failure in High Performance Adhesively Bonded Joints

Scientific Reports 10, 16833 (2020) Carbon nanotubes (CNTs) embedded polymers are of increasing interest to scientific and industrial communities for multi-functional applications. In this article, CNTs have been introduced to high-strength epoxy adhesive for enabling in-situ strain sensing in adhesively bonded aluminium-to-aluminium single-lap joints to accurately indicate the onset and propagation of adhesion failure to …


Meet the people involved in the project

  • Marcin Słoma, PhD, DSc, Assoc. Prof. (Project Leader)
  • Sylwia Kozdra, PhD (Postdoc)
  • Bartłomiej Wałpuski, MSc (PhD student)
  • Bartłomiej Podsiadły, MSc (PhD student)
  • Kacper Skarżyński, MSc (PhD student)
  • Andrzej Skalski, PhD (former postdoc)
  • Jakub Krzemiński, PhD (former PhD student)
  • Łucja Dybowska-Sarapuk, PhD (former PhD student)
  • Sandra Lepak-Kuc, PhD (former PhD student)
  • Bartosz Blicharz, MSc (former PhD student)

Join us!

All Bachelor and Master students are welcome to join our team. Your thesis might be a part of our project, and our project might be a part of your future CV. Do not hesitate to send an e-mail explaining your research interests and your motivation to work in our team.


The project is financed within the framework of the FIRST TEAM Programme

The FIRST TEAM Programme is part of the Grant Project (HOMING/POWROTY) of the Foundation for Polish Science financed from European Funds within the Smart Growth Operational Programme 2014–2020 Priority Axis IV: Increasing the scientific research potential Measure 4.4: Increasing the human potential in the R&D sector

Project value: 1 987 060 PLN