Microscale Hybrid Flexible Circuit Printed with Aerosol Jet Technique

IEEE Transactions on Nanotechnology, 2018, V: 17, I:5.

Today, a microprinted electronics circuits are gaining more and more importance, but still printed electronic devices such as transistors or OLEDs are unstable in air and shows a poor performance. Moreover, printed microelectronic elements do not meet quality and high-reliability requirements, essential in electronics applications. To fulfill these needs, hybrid electronic circuits, combining printed technology, and surface-mount technology, are recommended. This approach gets advantages from both methods:Surface-mount devices (SMD) elements provide a high device functionality whereas a printed pattern ensures the device flexibility and efficiency. In this work, silver nanoparticle-based aerosol jet ink (AgNP ink) is used to realize the approach of a hybrid circuit with aerosol jet printed pads and surface-mount devices. The ultrasonic atomization process ensures the high printing resolution and appropriate line formation. Electrical and mechanical characterization was performed to present the connection performance and quality. Cross section view and morphological inspection explain the joint high quality and good performance. Resistance characterization presents the high current conductance comparable with connections made by silver epoxy or ink-jet printing. Shear test results show an excellent connection strength complying with USA Military Standard. Finally, a flexible hybrid conductance touch sensor is manufactured, demonstrating the feasibility of the presented assembling solution.

First PRINTduino™ has arrived, and more will come.

One of the goals of 3WELES project is to fabricate fully functional microcontroller circuit, printed and 3D printed, with additional discrete components. An electronic circuit from silver paste was screen-printed on an elastic substrate, and elements were attached with electrically conductive adhesive. This allowed to fabricate a fully functional clone of Arduino™ microcontroller but based on a fully printed circuit, instead of PCB. We are currently working on 3D printed PRINTduino™, fabricated with elaborated materials, and with FDM and DW techniques.

This project was a part of a bachelor thesis „Applications of electrically conductive adhesives for assembly of printed electronics on a low temperature and elastic substrates” by Paweł Sawczuk.

3D Aerosol Jet Printed elements printed with 3D printed robot?

Phew! So much “3D printed”!

But it is coming. A group of two undergraduate students and one graduate student is preparing a new 3D printed 6 axis robot, being a compilation of several projects available online: BCN3D project, Andreas Hoelldorfer’s robot, and AR2 arm. If will be introduced to our newly built AJP laboratory equipment.

What about precision, what about functionality, what about durability? We do not know, but we are gonna build it, we will learn a lot from it, and it will work as we want!

Team members are Adrian Wawrzyn, Bartosz Szkoda, Kacper Krętowski, supervised by Jakub Krzemiński (MSc)

First demonstrator has arrived

Now we are getting somewhere!

First experiments towards the elaboration of conductive filament filled with Cu powders for fused filament fabrication technique gives positive results. We are now able to print conductive paths inside polymer casings – and by “we” I mean Barłomiej Podsiadły (PhD student). Next steps will cover other demonstrators i.e. keyboard, loudspeaker, inductor and transformer, 3D Printduino™ (2D is easy and done), … BFR components(?)


Carbon Nanomaterials in Printed Electronics Technology

The book was created from the need to present in a simple and understandable way the use of nanomaterials in electronics and the compilation of scattered results of the achievements of scientific teams from around the world. The necessity of this study is due to the lack of such extensive literature analysis in the Polish literature, concerning the use of carbon nanomaterials in printed electronics. Even in foreign literature, we can only find very detailed studies on specific applications such as biomedical, optoelectronic or sensor applications. In addition, a reader interested in a broader perspective on the work in the field of carbon nanotubes in printed electronics will find many references to already published papers in the domestic and international literature. The book also describes the author’s accomplishments related to the development of printed resistive layers, transparent electrodes, electroluminescent structures, photovoltaic cells, physical and chemical sensors, layers and paths for high-frequency electronics and heaters. Detailed research into electronic materials and structures is described, including a series of studies on the electromechanical properties of layers with carbon nanomaterials, the relationship between the application process parameters and the resistivity of the resulting composite layers, and the characteristics of the electrical conductivity mechanisms observed in composite layers with carbon nanomaterials.

Publishing House of the Warsaw University of Technology, Warsaw, 2017, ISBN 978-83-7814-611-7.

Full version of the book is available in the book-stores and on the IBUK Libra publishing platform.